
GRANT journal 
ISSN 1805-062X, 1805-0638 (online), ETTN 072-11-00002-09-4 

EUROPEAN GRANT PROJECTS | RESULTS | RESEARCH & DEVELOPMENT | SCIENCE  

 

 

 

 

The choice of the optimal parameter in the data compression task using 
generalized Laguerre functions 
 
 
Martin Tůma1 
 
1 The Faculty of Electrical Engineering and Communication Brno University of Technology; Technická 3058/10, Brno, 616 00, Czech 
Republic; xtumam02@stud.feec.vutbr.cz 
 
Grant: FEKT-S-11-6 
Název grantu: Podpora výzkumu moderních metod a prostředků v automatizaci 
Oborové zaměření: BA - Obecná matematika 
 
© GRANT Journal, MAGNANIMITAS Assn. 
 
 
Abstrakt This article deals with the use of the generalized Laguerre 
functions to the data compression. After the short introduction the 
definition of the generalized Laguerre polynomials and functions is 
given. The application of the discrete generalized Laguerre 
transform on the data compression is shown. It is pointed out that 
the discrete generalized Laguerre transform can give better results 
than the discrete cosine transform in the task of the data 
compression. The choice of the optimal parameter in the generalized 
Laguerre functions is discussed. The comparison between the 
optimal DLT, standard DLT, DCT and wavelet data compression 
with Haar and CDF basis is shown.  
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1. GENERALIZED LAGUERRE POLYNOMIALS AND 
FUNCTIONS 

This article is the extended version of the article [11]. The main aim 
is to show the choice of the optimal parameter in generalized 
Laguerre functions and show the comparison with the simple 
Laguerre functions in data compression task. The orthogonal 
functions are used in many fields. In this work we will focus on the 
use of the orthogonal Laguerre functions in the data compression 
task. The Laguerre functions were introduced by Edmond Laguerre 
more than 150 years ago. Many applications of them on various 
problems in mathematics, physics and electrotechnics were found. 
In this paper there will be shown some examples how can the usage 
of the Laguerre functions help to get better results in the data 
compression task. In the following some basic definitions will be 
presented. The generalized Laguerre polynomials 𝑙𝑛𝑎(𝑡)  are the 
solutions of the following differential equation 

𝑡𝑦′′ + (𝑎 + 1 − 𝑡)𝑦′ + 𝑛𝑦 = 0,𝑛 ∈ ℕ0, 𝑎 ∈ (−1,∞). 
The above differential equation can be converted into the Sturm-
Liouville form by multiplying 𝑡𝑎𝑒−𝑡 

−
𝑑
𝑑𝑡

(𝑡𝑎+1𝑒−t𝑦′) = 𝑛𝑡𝑎𝑒−𝑡𝑦,𝑛 ∈ ℕ0, 𝑎 ∈ (−1,∞). 
So, the vast theory about the Sturm-Liouville systems (see [6]) can 
be used for analyzing the properties of the solutions of the above 
equation, i.e. for analyzing the generalized Laguerre polynomials. 
The generalized Laguerre polynomials can be written in the 
following form 

𝑙𝑛
(𝑎)(𝑡) =

𝑡−𝑎𝑒𝑡

𝑛!
𝑑𝑛

𝑑𝑡𝑛 (𝑒−𝑡𝑡𝑛+𝑎). 

The generalized Laguerre polynomials form the complete 
orthogonal system in 𝐿2(0,∞) with respect to the weight function 
𝑡𝑎𝑒−𝑡, i.e., 

�  
∞

0
𝑙𝑖

(𝑎)(𝑡)𝑙𝑗
(𝑎)(𝑡)𝑡𝑎𝑒−𝑡𝑑𝑡 = �

𝑛 + 𝑎
𝑛 �Γ(𝑎 + 1)𝛿𝑖,𝑗 . 

One of the most important properties of the orthogonal polynomials 
is that they satisfy the 3-term recurrence relation. The generalized 
Laguerre polynomials satisfy following relation  

(𝑛 + 1)𝑙𝑛+1𝑎 (𝑡) = (2𝑛 + 1 + 𝑎 − 𝑡)𝑙𝑛𝑎(𝑡) − (𝑛 + 𝑎)𝑙𝑛−1𝑎 (𝑡). 
The above relation is very important for practical computation of the 
generalized Laguerre functions on the computer. The so-called 
simple Laguerre polynomials can be found in the literature. These 
can be obtained simply by putting 𝑎 = 0, 

𝑙𝑛
(0)(𝑡) = 𝑙𝑛(𝑡). 

The orthonormalized Laguerre polynomials are called the Laguerre 
functions 𝐿𝑛

(𝑎)(𝑡), 

𝐿𝑛
(𝑎)(𝑡) = �

𝑛! 𝑡𝑎

Γ(𝑛 + 𝑎)𝑒𝑡 𝑙𝑛
(𝑎)(𝑡). 

The special case for 𝑎 = 0 is 𝐿𝑛
(0)(𝑡) = 𝑒−

𝑡
2𝑙𝑛

(0)(𝑡). These Laguerre 
functions are called the simple Laguerre functions. 
There are many articles which deals with the choice of the optimal 
parameter 𝑎  for representation of the given signal by the 
Generalized Laguerre basis functions. 
In [5] there is shown how to find the optimal parameter for the 
following expansion of the signal (𝑡) ∈ 𝐿2(0,∞) . 

𝑓(𝑡) =  �𝑐𝑛

∞

𝑛=0

𝐿𝑛
(𝑎)(𝑡) 

Let’s define the following moments 

𝑚−1 = �𝑓(𝑡), 1
𝑡
𝑓(𝑡)� =  ∫ 1

𝑡
∞
0 𝑓2(𝑡)𝑑𝑡, 

 
𝑚0 = �𝑓(𝑡), 𝑓(𝑡)� =  ∫ 𝑓2(𝑡)𝑑𝑡∞

0 . 
It is shown in [5] that the optimal parameter  𝑎 is defined by the 
following equation 

𝑎𝑜𝑝𝑡 =
𝑚0

𝑚−1
 

This choice of the parameter 𝑎 minimize the integrated squared error 
(ISE) in the Generalized Laguerre expansion 

𝑓𝑀(𝑡) = ∑ 𝑐𝑛𝑀−1
𝑛=0 𝐿𝑛

(𝑎)(𝑡). 
The truncation error is defined as follows 

𝑒(𝑡) = 𝑓(𝑡) − 𝑓𝑀(𝑡). 
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The Integrated squared error (ISE) 𝜃(𝑎) is defined as 

𝜃(𝑎) = �𝑒(𝑡), 𝑒(𝑡)� =  � 𝑒2
∞

0
(𝑡)𝑑𝑡. 

This choice of the optimal parameter will be used in the example 
bellow. 
 
 

2. DLT FOR DATA COMPRESSION 
 
In this section the comparison between the discrete Laguerre and 
cosine transforms (DLT, DCT) and wavelet transforms with Haar 
and CDF basis when applied on the data compression task will be 
presented. 
 
The DCT was introduced in 1974 into electrical engineering 
literature by N. Ahmed, T. Natarajan and K.R. Rao in their article 
[3]. It is the real version of the discrete Fourier transform. 
Nowadays DCT and its modifications like the modified discrete 
cosine transform are the cores of many algorithms for data 
compression and signal processing. For example, DCT is used in the 
JPG and MP3 algorithms for image and sound processing. 
 
The main idea behind the use of the orthogonal transforms for data 
compression is their so-called "energy compaction property", see 
[4]. It means that the most of the information is stored in the first 
few Fourier coefficients of the Fourier series for the original data. 
 
Although there are many articles about the Laguerre polynomials 
and functions, the transform similar to DCT based on the Laguerre 
orthonormal functions wasn't introduced till 1995 when the article 
[2] appeared. In that article the DLT was defined with the help of 
Gauss-Laguerre integration in the similar way as the other finite 
orthonormal transforms. It was suggested, that this transform could 
lead to the better results in the data compression tasks than the DCT. 
It means that the DLT have the same "energy compaction property" 
as the DCT. This will work especially for the vectors, that decay 
exponentially to zero, i.e., that have the similar behavior as the 
Laguerre basis functions. 
 
Since 1995 the DLT was used in the modelling only few times. The 
article [1] was published in 1995 after the original article about 
DLT. In [1] there was shown the application of the DLT to the 
speech coding. The DLT was compared to DCT in the classic 
speech coding algorithm [10]. It was shown, that it outperforms the 
DCT at low bitrates. 
 
In 2000 and 2001 the DLT was applied to the digital image 
watermarking by M.S.A. Gilani and A.N. Skodras in their articles 
[7], [8] and [9]. It was shown that the image quality is better with 
the use of the DLT instead of the classical approach with the DCT. 
 
 

3. EXAMPLES OF DATA COMPRESSION 
 
Now the following data compression task for 𝑧 ∈ ℝ𝑁  will be 
presented. Let's consider the Fourier expansion for the vector 𝑧, i.e., 

𝑧 = �  
𝑁

𝑖=1

𝑐𝑖𝑢𝑖 , 

 
where {𝑐𝑖} are the Fourier coefficients for some orthonormal basis 
{𝑢𝑖}  of ℝ𝑁 . Now consider the truncated expansion for some 
𝐾 ≤ 𝑁,𝐾 ∈ ℕ, i.e., 

𝑤 = �  
𝐾

𝑖=1

𝑐𝑖𝑢𝑖 . 

The vector reconstruction 𝑤 is the approximation of the vector 𝑧. 
This move from the vector 𝑧  to the vector 𝑤  is often called the 
compression of the vector 𝑧 or simply the reduction of the model. 
The main idea of this compression is that the most of the 
information in the vector is contained in the first few Fourier 
coefficients of the vector expansion, i.e. that the used orthogonal 
transform has the "energy compaction property". 
 
In the following there are the pictures of the vector of length 
𝑁 = 32  reconstruction for 𝐾 = 4,8,16  using the discrete cosine 
basis (DCT), simple Laguerre function basis (DLT0) and 
Generalized Laguerre function basis (DLTopt) with the optimal 
choice of the parameter 𝑎 which was discussed in the chapter 1. The 
graphs and tables of the relative compression error (RCE) ∥ 𝑧 − 𝑤 ∥
/∥ 𝑧 ∥  are shown for 𝐾 = 4,8,12,16,20,24,28,32 . All the 
experiments were done in MATLAB. 
 
The vector is the exponentially damped sinusoid sampled in the 
interval [0, 3.2], i.e., 

𝑧𝑖 = 𝑒−0.2𝑖sin(𝑖), 𝑖 = 1. .32. 

 
Figure 1: Reconstruction of the vector for 𝑲 = 𝟒 

 
Figure 2: Reconstruction of the vector for 𝑲 = 𝟖 
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Figure 3: Reconstruction of the vector for 𝑲 = 𝟏𝟔 

 
Figure 4: RCE ∥ 𝒛 −𝒘 ∥/∥ 𝒛 ∥ of the vector 

 
In the next table the RCE comparison between the different basis 
vector compression is given.  It is shown that DLTopt basis gives 
very good results even in comparison with wavelets with Haar and 
CDF basis. 
 

K 4 8 12 16 

DCT 0.959 0.885 0.618 0.149 
DLT0 0.931 0.159 0.076 0.031 

DLTopt 0.982 0.065 0.041 0.015 
CDF 0.312 0.153 0.071 0.030 
Haar 0.334 0.158 0.052 0.027 

Table 1: RCE ∥ 𝒛 − 𝒘 ∥/∥ 𝒛 ∥ for DCT,  DLT0, DLTopt, Haar wavelet 
and CDF wavelet basis of the given vector 

 
K 20 24 28 32 

DCT 0.092 0.045 0.016 0.000 
DLT0 0.019 0.006 0.002 0.000 

DLTopt 0.011 0.004 0.001 0.000 
CDF 0.012 0.005 0.002 0.000 
Haar 0.015 0.006 0.002 0.000 

Table 2: RCE ∥ 𝒛 − 𝒘 ∥/∥ 𝒛 ∥ for DCT,  DLT0, DLTopt, Haar wavelet 
and CDF wavelet basis of the given vector 

 
 
 
 

 
4. CONCLUSION 

 
In the example in the previous chapter it was presented that the DLT 
performs significantly better than the DCT in the term of the relative 
compression error. This performance can be even better with the 
appropriate choice of the optimal parameter in Generalized Laguerre 
function basis. Thought it was pointed out in [2] that it would be 
possible to obtain such good results in the data compression task 
there are still many open questions and the future research in this 
field can bring some interesting facts. The future work will be 
focused on the searching for the precise definition of the classes of 
functions for which the use of DLT can bring such good results and 
on the computational aspects of DLT. 
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