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Abstract The presented article is focused on a dynamic analysis of 
the simply supported beam, which is loaded by the harmonically 
varying force and by the force with constant magnitude. Both of 
these types of loading are moving across the structure with constant 
velocity pv . Results of the theoretical analysis are compared with 
the experimentally obtained results and with the deterministic 
model based on the theory of the Fourier’s Series according to the 
Bachmann, Ammann, Young etc. The structure, chosen for a 
dynamical analysis, is the real footbridge across the Opatovicka 
street, placed in the Prague with a composite cross – section.  
 
Key words forced vibration, dynamical loading of footbridges, 
vibration due to pedestrians 
 
 
 

1. INTRODUCTION 
 
Currently, the vertical loading of footbridges, caused by human 
activities such as walking or running is considered as the 
harmonically varying force applied at resonance with some natural 
frequency, which is placed at the point with maximal value of the 
vertical deflection of corresponding natural mode. In this article are 
presented results from the numerical analysis, where three 
alternative models of loading were considered. The first model is 
the deterministic model, which is described by the equation  
  p 1 pF(t) m g 1 sin 2 f t        (1) 

 
where pm is the body weight of pedestrians, g is the gravitational 

acceleration, 1 is the coefficient of the Fourier’s Series and pf is 
the pacing frequency. The coefficients 1 determined by different 
authors are summarized in [5]. The comfort criteria for pedestrians 
during walking along the structure are expressed by the maximal 
vertical, respective lateral, value of acceleration. Therefore the 
acceleration of vibration were measured and computed. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

The second model is the force with a constant magnitude moving 
along the structure with constant velocity. It is described by the 
equation 

 p p
1F m g m 2gh      

 (2) 

 is the time of contact between pedestrian’s foot and the bridge 
deck and h is the height of free fall. 

 
Fig 3 The time behaviour of force with constant magnitude 
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Fig 1 The static scheme of the solved structure 

Fig 2 The cross-section of the solved structure
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The third model, which has been considered, is the harmonic force 
(deterministic model of pedestrian), moving along the structure 
with constant velocity and described also by the relation (1). 
 

2. MATHEMATICAL DESCRIPTION 
 

The footbridge structure is modeled by a discrete system of N mass 
points with N degrees of freedom (the MDOF system) see Fig. 4. 
In described study, only the vertical DOFs are considered. Hence 
the stiffness matrix K has to be reduced by the static condensation 
process to the matrix redK  where the massless DOFs, 
corresponding to rotational DOFs, are eliminated. Thus 

red 1
aa ab bb ba

−= −K K K K K . The mass matrix M is considered as 
diagonal with elements ( )L N 1µ + at the principal diagonal. The 

dimension of these matrices is N N× . For assembling the 

damping matrix C , the model of Rayleigh damping is used. In 
according to this assumption is the matrix C expressed by a linear 
combination of the matrices M and K then = α +βC M K . The 
coefficients of linear combination are formulated as 1 1α = ξ ω

1 1β = ξ ω where ( )1 12 fω = π , ( )1f is the first natural bending 

frequency. Then the problem of forced vibration should be written 
in matrix form (3). 

 
 [ ]{ } [ ]{ } { } { }red + + = M w C w K w F   (3) 

 
where{ }{ }{ }w w w  are column vectors of acceleration, velocity and 

deflection. Size of these vectors is N 1× . The right side of the 

equation (3) is the column force vector with same size N 1× . The 
process of assembling the stiffness matrix, with re-organized 
columns and rows for the static condensation method, is explained 
by following: 

 
 
 
 
 
 
 
 
 
 
 
 
 

2.1 The deterministic model 
 
The simplest model of a forced vibration due to human walking is 
the deterministic model, described by the relation (1). This force 
model is placed at the most efficient point of the adequate natural 
mode of vibration. If we consider the first natural mode of vibration 
and boundary conditions, which define a simply supported beam, 
the most efficient location is in the mid-span. In this paper is this 

model also considered as moveable force with constant velocity of 
walking or running. The coefficients 1α are determined according 
to Blanchard [5], Young [5], Bachmann and Ammann [1].  
 
 

2.2 The force with constant magnitude 
 

This concept is derived from the assumption that human body is 
acting as a mass point, which is falling free down to the bridge 
desk. The impact velocity is v 2gh= and the quantity of motion 
is expressed, according to the Newton’s second law of motion, as

pp m 2gh= divided of contact time τ , we receive the force of the 
impact. Time behaviour of the force is considered as periodic 
rectangular impulse see Fig. 3. 
 

3. THE SOLUTION OF THE FORCED VIBRATION 
 

The equation (3) is solved via vibration modes decomposition, 
which transforms the system of N simultaneous second-order 
differential equations to the N independent second-order 
differential equations. This advantage occurs only for standardized 
modes of vibration. Firstly the modal matrixΦ has to be computed. 
In the modal matrix are the standardized modes of vibration 
arranged to the columns. The natural modes of vibration were 
calculated via the Inverse Iteration Method (or the Stodola’s 
method) with using the Gramm – Schmidt ortogonalization. If we 
use a substitution { } [ ]{ }=wΦ q and multiply whole equation (3) 

with TΦ from the left, we receive the relation  

 
[ ] [ ][ ]{ } [ ] [ ][ ]{ }

[ ] [ ]{ } [ ] { }

T T

T Tred

+ +

 + = 

Φ M Φ q Φ C Φ q

Φ K Φ q Φ F

  


 (4) 

 

The meaning of the parts in the equation (4) is explained by 
following relations: [ ] [ ][ ] [ ]T =Φ M Φ E , [ ] [ ]T red   =   

2Φ K Φ Ω

where [ ]E is the unit matrix and 2  Ω is the spectral matrix 

contains circular natural frequencies at the principal diagonal.   
The modes of vibration, for simply supported beam, should be also 
described by continuous function ( ) ( )i

x sin i x Lφ = π i 1, , N=  . If 

we assume, that the force is moving along the structure with 
constant velocity pv , the function ( )

i
xφ could be transformed to the 

time domain via the substitution px v t= , therefore we are able to 

write, that ( ) ( )i
pt sin i v t Lφ = π . Thus we can rewrite the right side 

of the equation (4) in form 
 { } ( )( )p1 L 2 sin i v t L⊗ µ ⋅ πF  (5) 

instead of [ ] { }TΦ F . The vector { }F contains amplitudes of the 

force, which is acting at the structure. The symbol⊗ expresses 
multiplication of corresponding elements in vectors, multiplying 
with all natural modes of vibration. In the case of harmonic force, 
which is moving 
along the structure, the right side of the equation (4) is described by 
the relation 
 { } ( ) ( )( )p p1 L 2 sin i v t L sin 2 f t⊗ µ ⋅ π ⋅ πF  (6) 

After executing the modifications of the second – order differential 
equations (4) we are able to compute the unknown acceleration, 
velocity and the deflection of each discrete point. The Newmark’s 
β integration method was used for the solution of this problem. 

[ ]

3 3 2 2

3 3 2 2

2 2

2 2
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Fig 4 The discretized MDOF system 

1 2 3 N 1− N

L

88



GRANT journal 
ISSN 1805-062X, 1805-0638 (online), ETTN 072-11-00002-09-4 

EUROPEAN GRANT PROJECTS | RESULTS | RESEARCH & DEVELOPMENT | SCIENCE  

 

 

 

 
Fig 5 The first four modes of vibration of the simply supported 
beam for 41 DOFs 

The Newmark’s β integration method is described by follows 
relations: 

 ( ) 2 2
n 1 n n n n 1t 0.5 t t+ += + + − δ + δw w w w w      (7) 

 ( )n 1 n n nn 11 t t+ += + − γ + γw w w w      (8) 

 ( ){ }
( ){ }

1 n 1 n nn2
nn 1 2

n n n

1 t
t t

t 0.5 t

− +

+

 − + − γ  = + γ + δ    − + + − δ  

F C w w
w M C K

K w w w

  
  

  
 (9) 

Note, that these equations describe the solution of general dynamic 
problem (3). If we use the substitution { } [ ]{ }=wΦ q the primary 

unknowns are{ }q { }q { }q  and the meaning of matrices [ ]K [ ]C

[ ]M is: [ ]  =  
2KΩ [ ] [ ] [ ][ ]T=CΦ C Φ and [ ] [ ]=M I this is the 

consequence of the multiplying the matrices with standardized 
modal matrix [ ]Φ .     

3.1 The numerical values 
 

The structure is described by following values, which were 
determined experimentally or have been taken from the static 
design. 

The bending stiffness of the cross – section is considered as:
6

yEI 3.83 10= ⋅ 2kNm , the continuous mass of the beam

5.3t mµ = , theoretical span of the structure L 25.1= m and the 
logarithmical damping decrement, which have been found out 
experimentally as 0.088ϑ = . The damping ratio ξ  then could be 
computed with using the formulae 2ξ = ϑ π , thus 0.1851α = and

0.0011β = . In the case of loading were chosen following 
parameters: 

The deterministic model 

The body weight of the two synchronous pedestrians is    
pm 160= kg , the pacing frequency pf is equal to the first natural 

bending frequency of the footbridge, the velocity of motion

pv 2.6= 1ms− . 

The constant force  
The step length pd 0.8= m , time of contact between the bridge 

deck and human foot 0.4τ = s , h 0.1= m is the height of the free 
fall. The footfall forces with contact time are enable e.g. in [1] or in 
[2] 

4. EXPERIMENT 
 

 The in-situ experiment was focused on the acceleration response of 
the footbridge across the Opatovicka Street, which was loaded by 
different group of synchronous pedestrians and vandals. For the 
comparison with the theoretical analysis, presented in this study, 

the response caused by two synchronous pedestrians-runners was 
chosen. Two runners with whole weight approximately    

pm 160= kg were jogging across the footbridge with pacing 

frequency equal to the first natural bending frequency, which has 
been found out experimentally as: ( )1f 2.72Hz= . 

 

Fig 6 The placement scheme of the acceleration sensors on the 
bridge deck, taken from [3] 

5. RESULTS 
 

 Loading Moving deterministic model 
  Blanchard Bachmann Young / 
a alpha 0.275 0.5 0.655 1.0 
Maximum 0.17 0.31 0.41 0.62 
Minimum -0.17 -0.31 -0.41 -0.62 

Tab 1 The summary of evaluated acceleration from theoretical 
analysis 

Loading Constant 
Force Deterministic Model 

   Blanchard Bachmann Young 

a alpha  0.275 0.5 0.655 
Maximum 0.41 0.23 0.39 0.51 
Minimum -0.42 -0.23 -0.39 -0.51 

Tab 2 The summary of evaluated acceleration from theoretical 
analysis 

Experimental data 
 18 19 

Measured 
point 2 3 2 3 

Maximum 0.43 0.44 0.40 0.38 
Minimum -0.48 -0.47 -0.50 -0.55 

Tab 3 The summary of experimental results 
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Fig 7 The summary of measured and computed results 

 

Fig 8 The acceleration of the beam midpoint Moving deterministic 
model 

 

Fig 9 The acceleration of the beam midpoint Moving constant force 

 

Fig 10 The acceleration of the beam midpoint Deterministic Model 

6. CONCLUSION 
 

The submitted paper is aimed at an analysis of the forced vibration 
of a simply supported beam loaded by synchronous pedestrians. 
Mostly the behaviour of pedestrians is described by the 
deterministic motionless force, which is considered in the point 
with maximal ordinate of appropriate mode of vibration. Therefore 
the alternative models for acting pedestrian were used in the study 
described in the paper. The obtained results were compared with 
the basic simple model. First of this models is the pulsating force 
moving along the structure. Secondly the moving constant force 
increased by dynamic increment was revolved. The results obtained 

from these three types of loading were compared with the in-situ 
experiment. The results of theoretical analysis and experiment are 
summarized in the Tab. 1 respectively Tab.2 and Tab.3 and at Fig. 
7 – Fig. 10. The Figure 7 shows us, that the best results, which we 
are able to obtained from the dynamical analysis, presented in this 
study, provides the Young’s model in case of the moving 
deterministic model and the Bachmann’s and Ammann’s model in 
case of the motionless deterministic model placed at the mid-point 
of the structure. The moveable force with constant magnitude 
provides the very similar results as Young’s and Bachmann’s 
models. 
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