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Abstrakt Logistics for distribution and transportation are essential 
to the effective flow of products and services globally. Modeling 
approaches in transportation and distribution logistics have become 
crucial tools for streamlining operations, cutting expenses, and 
guaranteeing on-time delivery as supply chains grow more intricate 
and worldwide. The theoretical underpinnings of transportation and 
distribution logistics modeling are examined in this article, along 
with real-world examples that demonstrate how to use it. 
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Transport and distribution logistics form the backbone of modern 
supply chains, ensuring goods are delivered to customers efficiently 
and cost-effectively. With increasing complexity in global trade, 
robust and accurate modeling techniques have become indispensable 
for optimizing these operations. Modeling serves as a strategic tool 
for decision-makers, enabling them to design, analyze, and improve 
logistics networks. This article explores the theoretical 
underpinnings of transport and distribution logistics modeling and 
examines its applications through real-world examples. 
 
 

1. THEORETICAL FOUNDATIONS 
 
Managing the movement of resources, information, and items from 
the point of origin to the site of consumption is the focus of 
transport and distribution logistics. The objective is to accomplish 
this as cheaply and quickly as possible while taking environmental 
sustainability into account. 
 
 

1.1 Definitions and Key Concepts 
 
Transport and distribution logistics involve the movement of goods, 
materials, or information from origin points to consumption points. 
Modeling serves as an abstraction of real-world logistics systems, 
allowing analysts to capture essential features and solve problems 
efficiently. These models are indispensable tools for: 
 
 Network design: Determining optimal locations for warehouses 

and distribution centers. 
 Fleet management: Allocating vehicles and routes to meet 

demand with minimal costs. [7], [9] 

 Last-mile delivery optimization: Addressing challenges in 
urban logistics to minimize delays and improve customer 
satisfaction. 

 
A robust logistics model incorporates three primary dimensions: 
 
 Spatial: The geographical layout, including transportation 

networks, facilities, and customers. 
 Temporal: The timing of activities, including production, 

storage, and delivery. 
 Functional: The interdependence between logistics functions, 

such as procurement, inventory, and distribution. 
 
 

1.2 Types of  Models 
 
Logistics models [7] can be classified based on their mathematical 
structure, problem domain, and the type of solution sought. 
 

I. Mathematical Models 
Mathematical models represent logistics systems using 
equations or inequalities. Examples include: 

 
 Linear Programming (LP): Solves optimization problems with 

linear relationships, e.g., minimizing costs while meeting 
customer demand. 

 Integer Programming (IP): Extends LP by incorporating 
decision variables that must take integer values, such as the 
number of vehicles. 

 Dynamic Programming (DP): Solves problems that evolve 
over time, such as inventory replenishment schedules. 

 
II. Simulation Models 

Simulation models use computational tools to mimic real-
world processes. They are particularly useful for capturing 
system dynamics and uncertainty, such as traffic congestion or 
demand variability. Common methods include: 
 

 Discrete-Event Simulation (DES): Models the operation of 
logistics systems as a sequence of events, such as arrivals and 
departures at a warehouse. 

 Agent-Based Simulation (ABS): Represents individual agents 
(e.g., drivers, customers) to study interactions and emergent 
behaviors. 
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III. Optimization Models 

Optimization models are designed to find the best possible 
solution to a logistics problem while satisfying constraints. 
These models often employ: 

 
 Exact Algorithms: Provide guaranteed optimal solutions but 

may be computationally expensive (e.g., branch-and-bound, 
simplex method). 

 Heuristic Algorithms: Generate good solutions quickly but 
without a guarantee of optimality (e.g., nearest neighbor, 
Clarke-Wright savings). [2], [16] 

 Metaheuristic Algorithms: Advanced heuristics for solving 
large, complex problems, including genetic algorithms and 
simulated annealing. 
 

IV. Hybrid Models 
Hybrid models combine multiple modeling approaches to 
address complex systems. For example, a hybrid model may 
use simulation to estimate demand variability and optimization 
to design a robust delivery network. 

 
 

1.3 Key Objectives of Modeling 
 
The goals of modeling in transport and distribution logistics depend 
on the problem domain. Key objectives include: 
 

I. Cost Minimization 
Models aim to reduce operational costs by optimizing 
transportation [17], storage, and inventory expenses. For 
instance: 
 

 Transportation Costs: Optimizing delivery routes and selecting 
cost-effective transportation modes. [4], [5] 

 Inventory Costs: Balancing holding costs against ordering costs 
through inventory-transportation models. 
 

II. Service Level Optimization 
High service levels are crucial for customer satisfaction. 
Models help ensure: 
 

 On-Time Delivery: Minimizing delays by accounting for 
uncertainties like traffic or weather. 

 Product Availability: Ensuring sufficient stock levels through 
coordinated inventory and distribution strategies. 
 

III. Environmental Impact Reduction 
Green logistics [8] models incorporate environmental factors, 
such as fuel efficiency and emissions. This involves: 
 

 Route Optimization: Minimizing fuel consumption by choosing 
shorter or less congested routes. 

 Mode Selection: Encouraging the use of sustainable modes like 
rail or electric vehicles. 

 
IV. Risk Mitigation and Resilience 

Advanced models address uncertainties and disruptions, such 
as demand surges or supply chain disruptions, by 
incorporating scenario planning and sensitivity analysis. [6] 

 
1.4 Underlying Techniques 

 
 
Several mathematical and computational techniques underpin these 
models: 
 

 Graph Theory: Represents transportation networks [18] as 
graphs with nodes (e.g., locations) and edges (e.g., routes). 
Common in shortest-path algorithms. 

 Stochastic Programming: Deals with uncertainty by 
incorporating probabilistic data, such as demand forecasts or 
fuel prices. 

 Multi-Objective Optimization: Balances trade-offs between 
conflicting objectives, such as cost and service level, using 
Pareto efficiency. 

 
 

2. APPLICATIONS AND EXAMPLES 
 

2.1 Transport task 

Formulation of a classic transport task   

We have p suppliers D1, D2, . . . , Dp , with capacities a1, a2, . . . , 
ap, and q of customers O1, O2, . . . , Oq, with requirements b1, b2, . 
. . , bq. The cost of transporting a unit of goods from the supplier Di  
to the customer Oj is dij

 

. Our task is to determine how many goods 
to bring from which supplier to which customer in such a way that 
we deliver as many goods as possible so that neither the capacities 
of suppliers nor the requirements of customers are exceeded and so 
that the total price for transporting all goods is as low as possible 

Definition: The task of linear programming is to find such real 
numbers x1, x2, . . . , xn
while  

, for which f (x) is minimal,  

f (x) = cT .x = c1x1 + c2x2 + · · · + cnx
where 

n, , 

cT= c1, c2, . . . , cn a x= x1,x2 , . . . , x
and we are ooking the minimum value of f (x) under the 
assumptions: 

n, 

a11x1 + a12x2 + · · · + a1nxn  = b
a

1 
21x1 + a22x2 + · · · + a2nxn  = b

a
2 

m1x1 + am2x2 + · · · + amnxn = b
x

m 
1, x2, . . . , xn

 
 ≥ 0. 

Briefly, using matrix notation, the linear programming task can be 
formulated as: Minimize cT

A.x = b, x ≥ 0. 
 .x under the assumptions  

For solving the problem of lin 
ear programming, we have, for example, the famous simplex 
method, which (or its modifications) can be used with today's 
computing technology to handle even problems with thousands of 
variables. 
 
Other practical requirements may require that the variables x1,x2 , . . 
. , xn,, represented the numbers of real objects. In this case, all 
variables must be x1,x2 , . . . , xn,

∑ 𝑎𝑖
𝑝
𝑖=1 =∑ 𝑏𝑗

𝑞
𝑗=1 . 

, integers. A special case is the case 
when we require that all variables take only the values 0 or 1. There 
are several mathematical models for the transport task. The linear 
programming model is as follows. Let's first assume that the sum of 
the customers' demands is equal to the sum of the suppliers' 
capacities, i.e. 

 
Such a transport task is called balanced. Let X be a matrix of real 
numbers of the type p × q, whose element 𝑥𝑖𝑗means the amount of 
goods imported from the supplier Di to the customer Oj

∑  𝑝
𝑖=1 ∑ 𝑑𝑖𝑗𝑥𝑖𝑗

𝑞
𝑗=1                                            (1) 

. Then the 
total price for the transportation of all goods will be 
 ∑  𝑝

𝑖=1 ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑞
𝑗=1 . Solving the transportation task means 

determining the elements of the matrix X so that   

was minimal under the assumptions 
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∑ 𝑥𝑖𝑗
𝑞
𝑗=1 = 𝑎𝑖,     ∀ 𝑖 = 1,2,⋯ , 𝑝                                                  (2) 

∑ 𝑥𝑖𝑗
𝑝
𝑖=1 = 𝑏𝑗,     ∀ 𝑗 = 1,2,⋯ , 𝑞                                                    (3)                                            

 𝑥𝑖𝑗 ≥ 0,   ∀ 𝑖 = 1,2,⋯ , 𝑝 ,      ∀ 𝑗 = 1,2,⋯ , 𝑞                               (4) 
 
The double sum in (1) means total transportation costs; condition (2) 
means that we will transport the entire offered quantity a_i from 
each supplier Di

If the suppliers' offer was greater than the customers' requirements, 
i.e.  

; and condition (3) means that we will deliver all the 
required quantity of goods 𝑏𝑗 to each customer. Condition (4) says 
that negative quantities of goods cannot be transported. 

 
∑ 𝑎𝑖
𝑝
𝑖=1 > ∑ 𝑏𝑗

𝑞
𝑗=1 , 

 
the task model will be changed so that in conditions (2) instead of 
"=" the relation "≤", i.e., we will export at most a_i units of goods 
from each supplier. Other constraints (3) and (4) remain unchanged. 
Likewise, if 
 
∑ 𝑎𝑖
𝑝
𝑖=1 < ∑ 𝑏𝑗

𝑞
𝑗=1 , 

 
then in conditions (3) the "=" relation "≤" changes.  
Some methods of solving the traffic task assume its balanced shape. 
We will convert an unbalanced task into a balanced case so that the 
sum of the suppliers' capacities exceeds the sum of the customers' 
requirements, i.e.  if 
 
∑ 𝑎𝑖
𝑝
𝑖=1 > ∑ 𝑏𝑗

𝑞
𝑗=1 , 

then we supply the dummy customer Oq+1
 

 with the request  

𝑏𝑞+1 = ∑ 𝑎𝑖
𝑝
𝑖=1 =∑ 𝑏𝑗

𝑞
𝑗=1  

 
and all transport costs 𝑑𝑖(𝑞+1)zero. 
Analogously in the case 
 
∑ 𝑎𝑖
𝑝
𝑖=1 < ∑ 𝑏𝑗

𝑞
𝑗=1 , 

 
we supply a fictitious supplier. 
 
 

2.2 Green logistic modelling 
 
Green logistics modeling is a structured approach to optimize 
logistics activities (such as transportation, warehousing, and 
inventory management) with an explicit focus on minimizing 
environmental impact while maintaining economic and service-level 
efficiency. 
The mathematical definition of green logistics modeling typically 
involves multi-objective optimization, where both cost and 
environmental impact are considered as competing objectives. 
 
General Mathematical Formulation 
min (𝑓1(x), 𝑓2(x),…, 𝑓𝑘(x)) 
Where: 
 
 𝑓1(x): Represents total economic cost (e.g., transportation cost, 

warehousing cost). 
 𝑓2(x):  Represents total environmental impact (e.g., carbon 

emissions, energy consumption). 
 x: Decision variables, including routing decisions, mode 

selection, shipment quantities, and warehouse operations. 
 k: Number of objectives (e.g., cost, emissions). 
 
 

The solution satisfies: 
 
 Constraints (𝑔𝑖(x) ≤ 0, ∀𝑖): Representing practical limits like 

vehicle capacities, time windows, and regulatory standards. 
 Non-negativity constraints (x ≥ 0): Ensuring all variables are 

feasible in the physical system. 
 
Specific Components in Green Logistics Modeling 
 
Objective Functions 
 

• Economic Cost (𝑓1(x)): 
 

𝑓1(𝑥) = ∑  𝑁
𝑖=1 ∑ 𝐶𝑖𝑗𝑥𝑖𝑗𝑀

𝑗=1             
where: 
 
 𝐶𝑖𝑗: Cost of transporting goods from location i to j. 
 𝑥𝑖𝑗: Quantity of goods transported between i and j. 
 N ,M: Number of origin and destination nodes. 
 

• Environmental Impact (𝑓2(x)): 
 
𝑓2(𝑥) = ∑  𝑁

𝑖=1 ∑ 𝐸𝑖𝑗𝑥𝑖𝑗𝑀
𝑗=1             

where: 
 
 𝐸𝑖𝑗: Emissions or energy consumption per unit transported 

fromi to j. 
 𝑥𝑖𝑗: Decision variables as defined above. 
 
Constraints 
 
 Flow Balance: Ensuring supply meets demand at all nodes: 

�𝑥𝑖𝑗

𝑀

𝑗=1

−�𝑥𝑗𝑖 =
𝑀

𝑗=1

𝑆𝑖  ,∀𝑖 

where 𝑆𝑖   is the net supply at node i (positive for supply, negative 
for demand). 
 
 Capacity Constraints: 

 
𝑥𝑖𝑗 ≤ 𝑈𝑖𝑗 ,∀ 𝑖,j 
where 𝑈𝑖𝑗 is the capacity of the transport mode or warehouse. 
 
 Emission Regulations: 

 
∑  𝑁
𝑖=1 ∑ 𝐸𝑖𝑗𝑥𝑖𝑗𝑀

𝑗=1 ≤ 𝐸𝑚𝑎𝑥 
where 𝐸𝑚𝑎𝑥 is the allowable emissions threshold. 
 
Multi-Objective Optimization 
 
This involves solving trade-offs between cost and emissions, which 
can be achieved using methods such as: 
 
 Weighted Sum Method: 

 
min α⋅𝑓1(𝑥)+β⋅𝑓2(𝑥),  
where α,β are weights reflecting the relative importance of cost and 
environmental impact. 
 
 Pareto Optimization: Identifying a set of solutions where no 

objective can be improved without worsening another. 
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2.3 The Vehicle Routing Problem 
 
The Vehicle Routing Proble  (VRP) is a combinatorial optimization 
problem that seeks to determine the optimal routes for a fleet of 
vehicles to deliver goods or services to a set of customers while 
satisfying certain constraints and minimizing associated costs. [1], 
[11], [13] 
 

Key Components 
 

1. Graph Representation: 
o The problem is typically represented on a graph 

G=(V,E)  
 V={0,1,2,…,n}:  Set of vertices, where 

𝑣0represents the depot and  𝑣 1, 
𝑣2v2,…, 𝑣𝑛 represent the customers. 

 E: Set of edges connecting the 
vertices, representing possible routes. 

o Each edge (i,j)∈ E(i, j)  has an associated cost  
𝑐𝑖𝑗, often representing distance or travel time. 

2. Demand: 
o Each customer i has a demand 𝑑𝑖with 𝑑𝑖  ≥ 0. 

The depot has 𝑑0= 0. 
3. Vehicles: 

o A fleet of K vehicles, each with a maximum 
capacity Q, starts and ends at the depot 𝑣0. 

4. Routes: 
o A route is a sequence of vertices 𝑅𝑘={𝑣0, 

𝑣𝑖1 ,𝑣𝑖2,…, 𝑣𝑖𝑚 ,𝑣0} visited by vehicle k, where 
 ∑ 𝑑𝑖𝑖∈𝑅𝑘 ≤ Q. 
 
       Objective Function 
 
The objective of VRP is to minimize the total cost of the routes, 
typically defined as: 
Minimize Z=∑  𝐾

𝑘=1 ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝑅𝑘  
where: 
 
 𝑥𝑖𝑗𝑘  =1 if vehicle k travels directly from i to j, and 0 otherwise. 
 𝑐𝑖𝑗: Cost (distance or time) of traveling from i to j. 
 

Constraints 
 

The VRP involves several constraints to ensure the feasibility of the 
solution: 
 
1. Each customer is visited exactly once:  
 
∑  𝐾
𝑘=1 ∑ 𝑥𝑖𝑗𝑘 = 1j∈V,j≠i  ∀ 𝑖 ∈ 𝑉, 𝑖 ≠ 0 

 
2. Flow conservation at each vertex: 

For each customer iii, the number of vehicles arriving must 
equal the number of vehicles leaving: ∑ 𝑥𝑖𝑗𝑘j∈V,j≠i =
 ∑ 𝑥𝑗𝑖𝑘j∈V,j≠i , ∀ 𝑘, 𝑖 ∈ 𝑉 

 
3. Capacity constraint for each vehicle: 

The total demand served by a vehicle cannot exceed its 
capacity Q: ∑ 𝑑𝑖𝑖∈𝑅𝑘 ≤ Q,  ∀ 𝑘. 

 
4. Depot visit constraint: 

Each vehicle starts and ends its route at the depot: 
∑ 𝑥0𝑗𝑘j∈V,j≠0 = 1, ∀ 𝑘 

 
∑ 𝑥𝑖0𝑘i∈V,i≠0 = 1, ∀ 𝑘 
 

5. Subtour elimination constraint: 
To prevent disconnected subroutes (subtours), additional 
constraints are required, such as the Miller-Tucker-Zemlin 
(MTZ) formulation: 

 
𝑢𝑖−𝑢𝑗+Q⋅𝑥𝑖𝑗𝑘≤ Q−𝑑𝑗, ∀ i,j∈ V, i≠j, k 
 
where 𝑢𝑖 is the cumulative demand at node i. 
 
Sustainable Logistics Modeling 
The need for environmentally sustainable logistics systems is a 
driving force behind many modeling innovations. Governments, 
businesses, and consumers are increasingly focused on reducing the 
environmental impact of transportation and distribution activities. 
 
 

3. FUTURE TRENDS 
 
The future of transport and distribution logistics modeling is shaped 
by rapid advancements in technology, increasing complexity in 
supply chains, and the growing need for sustainable practices. Here 
are the key areas driving innovation and development in the field: 
 
Integration of Artificial Intelligence (AI) and Machine Learning 
AI and machine learning (ML) technologies are revolutionizing 
logistics modeling by enabling systems to process and analyze vast 
amounts of data. These technologies offer predictive insights, real-
time adaptability, and autonomous decision-making capabilities. 
 
Case Study: 
Amazon’s AI-driven logistics network leverages predictive analytics 
to optimize delivery routes and manage warehouse operations. A 
study by [16] estimated that such AI-driven strategies reduced last-
mile delivery costs by 10–15%. 
 
Real-Time Decision-Making with IoT 
 
The Internet of Things (IoT) is another transformative trend in 
logistics modeling. IoT-enabled devices, such as GPS trackers, 
temperature sensors, and RFID tags, provide real-time visibility into 
supply chain operations. These devices generate continuous streams 
of data that can be integrated into predictive models to enhance 
decision-making. 
 
Example: 
A 2022 study by [10] demonstrated that IoT-based logistics 
networks achieved a 25% reduction in delivery delays by optimizing 
routes based on real-time data. 
 
Sustainable Logistics Modeling 
The need for environmentally sustainable logistics systems is a 
driving force behind many modeling innovations. Governments, 
businesses, and consumers are increasingly focused on reducing the 
environmental impact of transportation and distribution activities. 
 
Case Study: 
A 2023 study by [12] focused on a retail chain’s use of a multi-
objective model to reduce greenhouse gas emissions. The model 
integrated renewable energy-powered warehouses and electric  
delivery vehicles, achieving a 20% reduction in emissions without 
compromising service quality. 
 
Advances in Computational Techniques 
Modern computational techniques are enhancing the ability to solve 
complex logistics problems more efficiently. 
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Example: 
A logistics firm utilized cloud-based computing to simulate a 
nationwide distribution network. According to [14], this approach 
cut computation time by 50%, allowing for more frequent model 
updates and real-time scenario testing. 
 
 

4. CONCLUSION 
 
A key component of contemporary supply chain management is 
modeling in transportation and distribution logistics, which helps 
companies to reduce expenses, improve service quality, and solve 
environmental issues. Although theoretical models offer insightful 
information, their practical applications frequently encounter 
difficulties that call for creative solutions. Future advancements in 
AI, IoT, and sustainability-focused models have the potential to 
completely transform the discipline and present both researchers and 
practitioners with new opportunities. 
 
Sources: 
 
1. Bräysy, O., & Gendreau, M. (2005). Vehicle routing problem 

with time windows, Part I: Route construction and local search 
algorithms. Transportation Science, 39(1), 104–118. 

2. Cordeau, J.-F., Gendreau, M., & Laporte, G. (1997). A tabu 
search heuristic for periodic and multi-depot vehicle routing 
problems. Networks, 30(2), 105–119. 

3. Crainic, T. G., & Kim, K. H. (2007). Intermodal transportation. 
Handbooks in Operations Research and Management Science, 
14, 467-537. 

4. Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching 
problem. Management Science, 6(1), 80-91. 

5. Fisher, M. L. (1997). What is the right supply chain for your 
product. Harvard Business Review, 75(2), 105-116. 

6. Geunes, J., & Pardalos, P. M. (2003). Supply Chain 
Optimization. Springer. 

7. Ghiani, G., Laporte, G., & Musmanno, R. (2013). Introduction 
to Logistics Systems Management. Wiley. 

8. Goel, A., & Gruhn, V. (2008). Green logistics: A review of 
initiatives and practices. Journal of Cleaner Production, 16(15), 
1728–1741. 

9. Gupta, S., & Maranas, C. D. (2003). Managing demand 
uncertainty in supply chain planning. Computers & Chemical 
Engineering, 27(8-9), 1219–1227. 

10. Chen, Y., & Zhang, H. (2021). Coordinating inventory and 
transportation in multi-echelon system.. Operations Research 
Letters, 49(2), 102-115. 

11. Laporte, G., & Nobert, Y. (1987). Exact algorithms for the 
vehicle routing problem. Annals of Discrete Mathematics, 31, 
147–184. 

12. Lee, S., & Park, D. (2023). Green logistics: A multi-objective 
optimization approach.. Sustainable Supply Chains Journal, 
9(4), 45-67. 

13. Nagurney, A. (2006). Supply Chain Network Economics: 
Dynamics of Prices, Flows, and Profits. Edward Elgar 
Publishing. 

14. Patel, R., & Singh, M. (2023). AI-driven optimization for 
resilient logistics systems. International Journal of Logistics 
Innovation, 12(1), 89-104. 

15. Savelsbergh, M. W. P., & Sol, M. (1998). Drive and deliver: 
Managing transportation in supply chains. INFORMS Journal 
on Computing, 10(1), 77-95. 

16. Smith, J., & Wang, L. (2022). A hybrid metaheuristic approach 
for the vehicle routing problem. Journal of Logistics Research, 
15(3), 231-245. 

17. Štefunko, J., & Madleňák, R. (2015). Allocation of postal 
network facilities, based on existing road infrastructure. 
https://doi.org/10.12955/cbup.v3.586 

18. Štefunko, J., & Madleňák, R. (2015). The optimization approach 
of postal transportation network based on uncapacitated fixed 
charge location model in conditions of Slovak republic. 
https://doi.org/10.21307/tp-2015-046 

19. Toth, P., & Vigo, D. (2002). The Vehicle Routing Problem. 
Society for Industrial and Applied Mathematics. 

67

Vol. 13, issue 02




