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Abstract The random character of wind deserves a dtatistical
approach to properly describe this meteorological phenomenon. This
paper focuses on finding the most suitable probability distribution to
characterize the wind regime in the city Nitra while considering the
wind speed data covering the 2021 year. Two commonly used
distributions — Weibull and gamma - in their 2- and 3- parameter
forms are compared via the Kolmogorov-Smirnov test and the
Anderson-Darling test, and via the criteria - Akaike's and Bayesian
information criterion, respectively, coefficient of determination and
the root mean square error. According to criteria’s results, the 3-
parameter Weibull distribution performs as the best in mgjority of
the months throughout the year.

Keywords Distribution fitting, parameter estimation, goodness-of-
fit test

1. INTRODUCTION

Modelling wind speed is crucia in various applications. In civil
engineering, it's used to estimate wind loads for building design and
construction. In air transport, it's considered to enhance flight safety.
In renewable energy, it's used to assess wind potential at a location.
As a random variable significantly influenced by time, space, local
climate, and terrain [1], wind speed requires statistical methods to
describeits variation.

Several probability distributions can be used to model wind speed in
different areas. The 2-parameter Weibull distribution is the most
common [2, 3, 4, 5]. However, it may not be suitable for all wind
regimes. The 3-parameter Weibull distribution is often used,
especialy when there's a higher frequency of lower wind speeds, as
it offers more flexibility and a better fit [6]. Beyond Weibull
distributions, other options include the gamma distribution [7],
lognormal distribution, Nakagami distribution [9], extreme value
distribution [10], Lindley distribution [11], and more.

This paper focuses on modelling wind speed in Nitra, Slovakia, a
significant administrative, industrial, and cultural center. With a
small airport and wind park nearby, understanding wind conditions
in Nitra is important. We compare four probability distributions: 2-
and 3-parameter Weibull and gamma distributions. Our goal is to
compare the fit of 2-parameter versus 3-parameter distributions as
well as to identify the best overall fit. To assess the fit, we use two
goodness-of-fit tests: Kolmogorov-Smirnov and Anderson-Darling.
Additionally, we employ information criteria (Akaike's and
Bayesian), the coefficient of determination, and the root mean
square efror.

The paper is organized as follows: Section 2 describes the analyzed
data. Section 3 defines the probability distributions, parameter
estimation method, and performance criteria. Section 4 presents the
results, which are summarized in Section 5.

2. DATA DESCRIPTION

The wind speed data, analysed in the paper, were recorded at the
meteorological station Nitra - Vel'ké Janikovce (indicator 11968),
GPS latitude 48 16" 50' [48.28056], GPS longitude 18° 08" 08'
[18.13556], the height of 132 meters above sea level. The station is
located on the outskirts of the city Nitra, within the ground of a
small airport. It is surrounded by the fields; the genera face of the
surroundings is partialy sheltered. The mast for wind measurement
is within the measuring plot; it is located on the roof of the building.
The standard height for measuring wind direction and speed at
monitoring stations is 10 m above the ground. Vaisala automatic
instruments and GILL ultrasonic instruments were used to measure
wind characteristics. The data were collected from the
meteorological reports within the time frame January 2021 to
December 2021, included. The data were recorded a hourly
intervals and split into groups referring to months.
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According to descriptive statistics summarised in tab. 1 and 2,
during the studied period the lowest monthly mean wind speed was
observed in September with value of 3.05 m/s, while in April there
was the highest mean wind speed with value of 4.93 m/s. The
standard deviation varies from 2.10 m/s in September to 2.96 m/sin
April. The coefficient of variation (CV) is useful for identifying
months with higher variability of wind speed. According to [11], the
value of CV > 40 % is classified as a very high variability and CV >
70 % indicates the extremely high variability of wind speed. The
coefficient of variation ranged from 50.98 % in May to 69.01 % in
March. Based on this, the results imply that the wind speed in all
months can be classified as having a very high variability. Skewness
and kurtosis measure the asymmetry and the peakness of the wind
speed distribution, respectively. The coefficients of skewness ranged
from 0.38 in April to 1.40 in September, indicating that all
distributions are right skewed. Further, the wind speed data can be
regarded as moderately to highly right skewed. The coefficient of
kurtosis ranged from 1.99 in October to 5.28 in September. That
indicates a highly leptokurtic distribution when compared to the
normal distribution.

Tab. 1. Descriptive statistics of the dataset. Part 1.

Mean | Standard | Coefficient Skewness | Kurtosis
deviation | of variation
Jan. 3.988 | 2.490 62.455 0.618 2.4363
Feb. | 4500 | 2.792 62.041 0.616 2.8067
Mar. 4.047 2.793 69.008 0.619 2.2934
Apr. | 4932 | 2.957 59.941 0.381 2.2088
May | 4.877 | 2.486 50.981 0.411 2.6949
June | 3.204 | 2117 66.084 1.098 3.7488
July 3616 | 2.152 59.501 0.590 2.4271
Aug. | 3.177 2.177 68.526 0.920 3.1533
Sept. | 3.052 | 2.104 68.942 1.403 5.2820
Oct. 4,053 | 2.567 63.341 0.462 1.9998
Nov. | 4.038 | 2.570 63.642 0.581 2.3892
Dec. | 4.059 | 2.739 67.483 0.623 2.4226
Tab. 2. Descriptive statistics of the dataset. Part 2.
Min Max Lowgr Median Uppgr
quartile quartile
Jan. | 0.400 | 11.600 1.900 3.500 5.700
Feb. | 0.500 | 14.700 1.900 4.100 6.500
Mar. | 0.300 | 12.300 1.550 3.350 6.200
Apr. | 0.500 | 13.100 2.250 4.700 7.100
May | 0.700 | 13.300 2.900 4.800 6.500
June | 0.300 | 11.500 1.600 2.500 4.500
July | 0.500 | 10.100 1.750 3.200 5.100
Aug. | 0400 | 11.900 1.400 2.500 4.700
Sept. | 0.500 | 13.200 1.400 2.500 4.200
Oct. | 0.500 | 10.300 1.700 3.600 6.250
Nov. | 0.500 | 11.900 1.800 3.500 6.100
Dec. | 0.400 | 12.700 1.600 3.400 6.300

3. METHODOLOGY

In this section, the probability distributions employed to fit the wind
data are briefly characterized. Further, we provide the parameter
estimates realized by the maximum likelihood method as one of the
most used estimation methods. To assess the performance of each
probability distribution, we apply two goodness-of-fit tests and four
model selection criteriathat are defined by the end of the section.

3.1 Probability distributions

The probability density function f(x) of the 2-parameter Weibull
distribution is given as
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= ot (-3

The cumulative distribution function is defined as

F(x)=1—exp (— (%)a),

for x >0, @ >0, f > 0. Parameter « is the dimensionless shape
parameter and 8 is the scale parameter in units of the wind speed.

The probability density function f(x) and the cumulative
distribution function F(x) of the 3-parameter Weibull distribution
are given by

f) = gz (= 6) exp (— (= 9))

F(x)=1—exp (— (xﬁ#)“)

for x >0, a >0, B >0. Same as for the 2-parameter Weibull,
parameter « is the dimensionless shape parameter, g is the scale
parameter in units of the wind speed. Additional parameter 6 is the
location parameter.

The probability density function f(x) and the cumulative
distribution function F(x) of the 3-parameter Gamma distribution
are given by

FO) = g = OO ‘e (-5°)
xX—v
F(x) = Y—(a}(a)[; )

forx>6, a>0, B>0.Herey(p,x) = foxe_t tP~ldt, p > 0,is
the lower incomplete Gamma function. Again, a is the shape
parameter, B is the scale parameter and 6 is the location parameter.
Setting 6 = 0, we obtain the 2-parameter Gamma distribution.

3.2 Maximum likelihood method

This method is based on the maximization of the likelihood function
L(xq4, %3, ..., xn;0) or its logarithm InL(xq, x5, ..., x,; 6) where
6 € ® is the unknown parameter (in general, it is a vector
parameter) and x4, x5, ..., X, IS a redlization of the random sample
X1, X5, ..., X, of size n from the distribution with the probability
density function f(x,8). Setting the derivative of the likelihood
function or the loglikelihood function with respect to the unknown
parameters equal to zero, the equations for the estimates of the
parameters are found. The maximum likelihood estimates of the 2-
parameter Weibull are of the form

1 1x lnxl

- Zlnxl—O
a ll l
1 n 1/a
ﬁ=(zzxi“>

i=1
For the 3-parameter Weibull probability distribution, the parameter
estimates are found as solutions of the equations

1 Y, (u—0)%In(x—0) 1
—_ = l_I(Xl ) n(xl ) - ZZ ln(xl- - 6),
i=1

4 .inzl(xi - g)a

n 1/a
1
B = (;Z(Xi -6) ) ,

i=1
a 13 (x—0)" Z": 1

1—a nyt,(x—6)a1 Lix—6
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The estimates for the 2-parameter gamma distribution are given by
the equations

Q| =

ﬁ:

n
1
Y(a) =lna—Inx + ;Z Inx;,
i=1

ainr(p)

wherey(p) = o ' P > 0, isthe digamma function. Here

The estimates for the 3-parameter gamma distribution are given by
the equations [12]

2 A1 +27) + 2z
+Zl <—l—31n(1 + AZi) +m = 0,
=
U=x,
where the following reparameterization is used
1 o X — U

a=- B =oalAl, 9=#—1. =

A>0,x and(p) are defined above.

It is obvious that the parameter estimates of all distributions can be
found only numerically by solving the equationsin an iterative way.

3.3 Model selection criteria and goodness-of-fit tests

When the estimates of the parameters are found, one can assess the
goodness-of-fit (GOF) of the model. The GOF criteria show how
well the selected model fits the wind speed data. Assessing the
performance of different probability distribution modelsis necessary
to provide more accurate information about their performance and to
compare these models among themselves. Here, the commonly used
GOF tests - the Kolmogorov-Smirnov (KS) test and the Anderson-
Darling (AD) test are employed. The GOF tests are used to decide
whether the data follow the specified theoretical distribution. The
KStest statistic represents the largest vertical difference between the
theoretical and the empirical cumulative distribution function

~ i—1y 11 4
max ||F(x) ——— | |; - F(x(i))”
where F(x) is the estimated cumulative distribution function,
X(1), X(2), -, X(n) € Observations in ascending order, i.e.,, x) <
X2y S o < Xgny. FUNCion Fp(x) == ¥ I(xy < x) s the
empirical distribution function, where I(x¢;) < x) is an indicator
function assuming the value 1 if x(; < x and O otherwise. The null
hypothesis that the data follow the distribution under test, is rejected
at the chosen significance level « if the test statistic D > D(a),

where D(«) is acritical value of the KStest. The smaller the value
of thetest statistic D, the better thefit.

D=max[

The Anderson-Darling (AD) test is a modification of the KS test.
Thistest is considered to be a better GOF test because it gives more
weight to the tails of the distribution than does the KS test. The AD
test statistic is defined as follows
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n

2= == Y 2 i (Fo0)) + 10 (1 P Cxnr-o)}

n

i=1
The null hypothesis that data follow the specified distribution, is
rejected at the significance level a if the test statistic A2 is greater
than the critical value of the AD test. Again, the smaller value of the
test statistic A indicates a better fit.

The application of the maximum likelihood method (MLM) for
parameter estimation alows us to use the information criteria -
Akaike's information criterion (AIC) and Bayesian information
criterion (BIC) - to decide the GOF for the distributions. The AIC
and the BIC are defined as follows[13, 14]
AIC = —=2InL + 2k,
BIC = -2InL+klnn

where InL is the maximum value of log-likelihood function for
estimated model, k is number of estimated parameters and n is the
sample size.

Further, the coefficient of determination (R?) and the root mean
square error (RMSE) are considered to decide on the best fitting
model. The RMSE determines the accuracy of model by calculating
average of the square difference between the observed and the
predicted probabilities of the theoretical distribution. The R is used
to measure the linear relationship between the observed and the
predicted probabilities of the theoretical distribution. The RMSE and
R are calculated by

n

1
2
RMSE = (%Z[Fn(xi) - ﬁ(xi)]2> ,

i=1
2 ?:1[ﬁ(xi) - F]Z
n[BG) - F] + 50 [Fux) — B

where F = % >r L F(x).

Generadly, lower values of KS, AD, AIC, BIC, RMSE and higher
value of R? indicate better fit of the theoretical distribution to the
wind speed data as compared to the others.

4. RESULTS

The parameter estimates for all
distributions are presented in tab. 3.

four considered probability

Tab. 3. The parameter estimates of the applied distributions.

Month Probability Parameter estimates
distribution
2-parameter @ = 1.658
Weibull B =4473
3-parameter @ = 1.429 6 =0.362
Weibull f =3.982

Januiary 2-parameter g =2.306
Gamma B =1729
3-parameter @ = 1773 6 =0319
Gamma B = 2.069
2-parameter a = 1.665
Weibull B = 5.047
3-parameter @ = 1.390 8 = 0.490
Weibull B = 4.383

February 2-parameter g =2.299
Gamma B =1.957
3-parameter a=1611 6 =0.481
Gamma B = 2.495

March 2-parameter @ = 1476
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Weibull B = 4.487 Weibull B = 4521
3-parameter @ = 1304 6 =0.296 3-parameter @ =1.322 6 =0.463
Weibull B = 4.062 Weibull B =3.870
2-parameter @ = 1896 2-parameter @ =2211
Gamma B =2135 Gamma B =1.826
3-parameter @ = 1494 6 = 0.292 3-parameter @ = 1.505 0 =0.444
Gamma B =2514 Gamma B = 2.389
April 2-parameter @ =1.701 December 2-parameter @ =1.515
Weibull B =5529 Weibull B =4514
3-parameter @ = 1.460 6 =0422 3-parameter @ =1278 6 =0.393
Weibull B = 4.955 Weibull B =3.948
2-parameter @ =2.264 2-parameter @ =1.979
Gamma B =2179 Gamma B =2.051
3-parameter a@=1741 6 =0373 3-parameter @ = 1424 6 =0.388
Gamma B =2619 Gamma B =2579
May 2-parameter @ = 2.070
Weibull B =5511 Tab. 4 summarises the values of the goodness-of-fit criteria that
3-parameter a = 1.820 6 = 0.443 alow us to choose the most accurate probability distribution among
Weibull B =4978 the applied ones.
2-parameter @ = 3.263
Gamma B = 1.495 Tab. 4. The GOF and the model selection criteria for the applied
3-parameter @ =3263 8 =0 probability distributions.
Gamma 7 = 1495 [ AIC | BIC | R”Z® [ RMSE | KStest | ADtest
P January
June @g@éﬁwaa Z = ;Zéz W2 [ 3308340 | 3317.564 | 0.994 | 0023 | 0.050 | 3.150
b= 2 _ w3 3286.152 | 3299.988 | 0.995 | 0.021 [ 0.043 | 2524
3-parameter a=1436 6 =0.291 Gam2 | 3312.681 | 3321.905 | 0.994 | 0.024 | 0.047 | 3.313
Weibull B =3221 Gam3 | 3304.400 | 3318.245 | 0.993 | 0.025 | 0.048 | 3.247
2-parameter @ = 2473 February
Gamma B =129 w2 3149.170 | 3158.190 | 0.989 | 0.033 [ 0.079 | 4.895
3-parameter @ =1948 6 =0.270 W3 3121.195 | 3134.726 | 0.985 | 0.037 [ 0071 | 5542
Gamma B =1.506 Gam2 | 3156.192 | 3165.212 | 0.984 | 0.039 | 0.076 | 6.340
July 2-parameter @ =1762 Gam3 | 3139.340 | 3152.871 | 0.981 | 0.043 | 0.085 | 6.769
Weibull B =4.077 March
3-parameter @ = 1.431 6 =0.476 w2 3422.236 | 3431461 | 0.980 | 0.044 | 0.092 | 8.824
Weibull 7 = 3.450 w3 3389.323 | 3403.159 | 0.983 | 0.041 | 0.077 | 7.477
2-parameter 4= 2.604 Gam2 | 3422.337 | 3431561 | 0.980 | 0.044 | 0.082 | 8.915
Gamma 5= 1389 Gam3 | 3397.810 | 3411.647 | 0.983 | 0.041 | 0.075 | 7.416
3-parameter @ = 1760 0 = 0446 w2 3495.607 | 3504.765 A(? g|87 0.035 | 0069 | 569
g Szr:rr;?] o g; 1:2(3)2 W3 | 3486.118 | 3499.856 | 0.984 | 0.040 | 0.083 | 6.979
‘ A Gam2 | 3520.699 | 3529.857 | 0.981 | 0.042 | 0.088 | 7.588
Weibull f=3548 _ Gam3 | 3517.992 | 353L729 | 0.977 | 0.046 | 0.095 | 8.637
3-parameter @ = 1.260 6 =0391 May
Weibull B =299 W2 | 3309.878 | 3409.102 | 0.996 | 0.019 | 0.042_| 1860
2-parameter a=2156 w3 3396.047 | 3409.883 | 0.993 | 0.025 | 0.052 | 3.128
Gamma B =1473 Gam2 | 3429.212 | 3438436 | 0.986 | 0.035 | 0.071 | 5341
3-parameter @ = 1.456 6 = 0.382 Gam3 | 3431.212 | 3445048 | 0.986 | 0.035 | 0.071 | 5.341
Gamma £ =1.920 June
September 2-parameter @ =1568 w2 2891.865 | 2901.024 | 0.977 | 0.045 | 0.099 | 8.454
Weibull 2 = 3423 w3 2852.689 | 2866.427 | 0.984 | 0.037 [ 0.085 | 5559
3-parameter q@ = 1241 5 = 0493 Gam2 | 2857.850 | 2867.008 | 0.982 | 0.041 | 0.093 | 6.659
Weibull F=2747 Gam3 | 2839.810 | 2853548 | 0.987 | 0.034 | 0.078 | 4555
2-parameter a = 2.404 July
Gamma 5 = 1270 w2 3107.345 | 3116569 | 0.990 | 0.030 [ 0.063 | 4.603
3 parameler 2= 1475 50483 w3 3071579 | 3085.415 | 0.992 | 0.028 | 0.053 | 3552
Gamma = 1742 Gam2 | 3106.697 | 3115921 | 0.990 | 0.031 | 0.058 | 4.815
- Gam3 | 3090.157 | 3103.993 | 0.990 | 0.030 | 0.060 | 4.285
October 2-parameter @ = 1.622 Ao
Weibull B = 4537 _ W2 | 3025.086 | 3034.311 | 0.982 | 0.041 | 0.093 | 7.335
3-parameter a = 1308 0 = 0.484 w3 2961.509 | 2975.345 | 0.991 | 0.028 | 0.064 | 3599
Weibull B =3.855 Gam2 | 3005.979 | 3015.204 | 0.985 | 0.038 | 0.083 | 6.470
2-parameter @ =2.186 Gam3 | 2965.695 | 2979531 | 0.992 | 0.027 | 0.056 | 3.386
Gamma B = 1.854 September
3-parameter a = 1447 6 = 0477 W2 2843.958 | 2853.117 | 0.983 | 0.038 | 0.079 | 7.142
Gamma B =2471 w3 2748.740 | 2762.478 | 0.995 | 0.021 [ 0.054 | 1.995
November 2-parameter @ = 1.621 Gam2 | 2801.463 | 2810622 | 0.986 | 0.035 | 0.083 | 5.374
Gam3 | 2745.727 | 2759.465 | 0.995 | 0.020 | 0.051 | 1.728
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October
W2 3354.628 | 3363.852 | 0.982 | 0.042 0.085 8.813
W3 3315.600 | 3329.436 | 0.984 | 0.040 0.077 7.629
Gam2 | 3361.959 | 3371.183 | 0.982 | 0.043 0.079 8.921
Gam3 | 3334.001 | 3347.837 | 0.983 | 0.040 0.077 7.753
November
W2 3239.357 | 3248.515 | 0.986 | 0.037 0.076 5.884
W3 3205.517 | 3219.254 | 0.988 | 0.034 0.074 5.019
Gam2 | 3243.262 | 3252.421 | 0.985 | 0.038 0.076 6.214
Gam3 | 3223.374 | 3237.112 | 0.986 | 0.036 0.077 5.500
December
W2 3407.498 | 3416.722 | 0.980 | 0.044 0.091 8.546
W3 3365.978 | 3379.814 | 0.983 | 0.040 0.083 7.074
Gam?2 | 3408.548 | 3417.772 | 0.980 | 0.044 0.085 8.729
Gam3 | 3377.748 | 3391.584 | 0.983 | 0.040 0.088 7.090

Comparing the performance of al probability distributions, the 3-
parameter Weibull distribution generally provided the best fit for
most months. In February, the 3-parameter Weibull obtained the
best results in terms of information criteria and the KS test, whereas
the 2-parameter Weibull achieved the best values of the R?, RMSE
and the AD test. In April, the 3-parameter Weibull obtained the best
results in terms of information criteria; however, according to the
goodness-of-fit tests, the R’ and RMSE, the 2-parameter Weibull
provided the best fit. In May, the best fit is obtained by the 2-
parameter Weibull. The 3-parameter gamma distribution performed
as the best one in June and September (according to all criterid). In
August, 3-parameter gamma distribution achieved the best results
according to the goodness-of-fit tests, the R? and RMSE. According
to the information criteria, the best fit is obtained by the 3-parameter
Weibull.

When we compare the performance of the 2- and 3- parameter
Weibull distribution, we can see that the 3- parameter distribution
provided more accurate approximation than the 2-parameter
distribution in majority of months. Similarly, the 3- parameter
gamma distribution fitted the data better in comparison to the 2-
parameter gamma distribution.

5. CONCLUSION

In the paper, we fitted the wind speed in the city Nitra by four
probability distributions (2-parameter and 3-parameter Weibull, 2-
parameter and 3-parameter gamma) to identify the probability
distribution most suitable for modelling. All of them provided
accurate enough fit; however, the Weibull probability distribution
outperformed the gamma distribution in most months. The 3-
parameter Weibull distribution obtained the best results in October
to December, in January and in July. The 2-parameter Weibull
distribution beat the rest of the distributions in April and May. The
3- parameter gamma distribution excelled in June and September.

From the comparison between the performances of the 2- and 3-
parameter probability distributions, we can conclude that the 3-

Vol. 13, issue 02

parameter distributions obtained better results than the 2- parameter
ones. This indicates that the presence of the location parameter
improves the results significantly.
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